Exercise 45

For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}
$$

Solution

$c x^{2}+2 x$ and $x^{3}-c x$ are polynomials. These are continuous on their respective domains by Theorem 7. Determine c by requiring the function to be continuous at $x=2$.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{+}} f(x) \\
\lim _{x \rightarrow 2^{-}}\left(c x^{2}+2 x\right) & =\lim _{x \rightarrow 2^{+}}\left(x^{3}-c x\right) \\
c(2)^{2}+2(2) & =(2)^{3}-c(2) \\
4 c+4 & =8-2 c
\end{aligned}
$$

Solve for c.

$$
\begin{aligned}
4 c+2 c & =8-4 \\
6 c & =4 \\
c & =\frac{2}{3}
\end{aligned}
$$

Below is a graph of $f(x)$ versus x with $c=\frac{2}{3}$.

